The effect of surface charge on nonspecific uptake and cytotoxicity of CdSe/ZnS core/shell quantum dots
نویسندگان
چکیده
In this work, cytotoxicity and cellular impedance response was compared for CdSe/ZnS core/shell quantum dots (QDs) with positively charged cysteamine-QDs, negatively charged dihydrolipoic acid-QDs and zwitterionic D-penicillamine-QDs exposed to canine kidney MDCKII cells. Pretreatment of cells with pharmacological inhibitors suggested that the uptake of nanoparticles was largely due to receptor-independent pathways or spontaneous entry for carboxylated and zwitterionic QDs, while for amine-functionalized particles involvement of cholesterol-enriched membrane domains is conceivable. Cysteamine-QDs were found to be the least cytotoxic, while D-penicillamine-QDs reduced the mitochondrial activity of MDCKII by 20-25%. Although the cell vitality appeared unaffected (assessed from the changes in mitochondrial activity using a classical MTS assay after 24 h of exposure), the binding of QDs to the cellular interior and their movement across cytoskeletal filaments (captured and characterized by single-particle tracking), was shown to compromise the integrity of the cytoskeletal and plasma membrane dynamics, as evidenced by electric cell-substrate impedance sensing.
منابع مشابه
A comparative study about toxicity of CdSe quantum dots on reproductive system development of mice and controlling this toxicity by ZnS coverage
Objective(s): Medicinal benefits of quantum dots have been proved in recent years but there is little known about their toxicity especially in vivo toxicity. In order to use quantum dots in medical applications, studies ontheir in vivo toxicity is important. Materials and Methods:CdSe:ZnS quantum dots were injected in 10, 20, and 40 mg/kg doses to male mice10 days later, mice were sacrificed ...
متن کاملP-156: A Study about Toxicity of CdSe Quantum Dots on Male Sexual System of Mice and Controlling This Toxicity by ZnS Coverage in Immature Mice
Background: Quantum dots are commonly composed of cadmium contained semiconductors. Cadmium is potentially hazardous but toxicity of such quantum dots is not yet systematically investigated. On the other hand, in vitro studies have shown almost complete control of CdSe induced cytotoxicity by ZnS coverage. Toxicity of CdSe quantum dots and controlling this toxicity by ZnS coverage in immature m...
متن کاملMicrostructural and optical properties of CdSe/CdS/ZnS core-shell-shell quantum dots.
CdSe/CdS/ZnS core-shell-shell quantum dots (QDs) were synthesized by using a solution process. High-resolution transmission electron microscopy images and energy dispersive spectroscopy profiles confirmed that stoichiometric CdSe/CdS/ZnS core-shell-shell QDs were formed. Ultraviolet-visible absorption and photoluminescence (PL) spectra of CdSe/CdS/ZnS core-shell-shell QDs showed the dominant ex...
متن کاملThiolate-Capped CdSe/ZnS Core-Shell Quantum Dots for the Sensitive Detection of Glucose
A semiconducting water-soluble core-shell quantum dots (QDs) system capped with thiolated ligand was used in this study for the sensitive detection of glucose in aqueous samples. The QDs selected are of CdSe-coated ZnS and were prepared in house based on a hot injection technique. The formation of ZnS shell at the outer surface of CdSe core was made via a specific process namely, SILAR (success...
متن کاملEffect of ZnS shell thickness on the phonon spectra in CdSe quantum dots
The evolution of the optical phonon spectra of colloidal core/shell CdSe/ZnS quantum dots with an increase of the shell thickness from 0.5 to 3.4 monolayers has been studied by resonant Raman spectroscopy. The results obtained suggest that the ZnS shell changes its structure from amorphous to partly crystalline as the thickness increases. Simultaneously, an increase in Raman scattering by surfa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015